top of page
Search
elysecorsino451xb4

Rapid Review Of Radiology



As in all specialties, learning in radiology is a life long process but for radiologists in training there is a vast amount of information to assimilate. In this book the authors have compiled 191 cases to help the reader with the practical aspects of image recognition and differential diagnosis.The selection of cases is broad enough to provide an


As in all specialties, learning in radiology is a life long process but for radiologists in training there is a vast amount of information to assimilate. In this book the authors have compiled 191 cases to help the reader with the practical aspects of image recognition and differential diagnosis.The selection of cases is broad enough to provide an




Rapid Review of Radiology



Background: Coronavirus disease 2019 (COVID-19) is a rapidly emerging disease that has been classified a pandemic by the World Health Organization (WHO). To support WHO with their recommendations on quarantine, we conducted a rapid review on the effectiveness of quarantine during severe coronavirus outbreaks.


Objectives: We conducted a rapid review to assess the effects of quarantine (alone or in combination with other measures) of individuals who had contact with confirmed cases of COVID-19, who travelled from countries with a declared outbreak, or who live in regions with high transmission of the disease.


Data collection and analysis: Two review authors independently screened 30% of records; a single review author screened the remaining 70%. Two review authors screened all potentially relevant full-text publications independently. One review author extracted data and assessed evidence quality with GRADE and a second review author checked the assessment. We rated the certainty of evidence for the four primary outcomes: incidence, onward transmission, mortality, and resource use.


Main results: We included 29 studies; 10 modelling studies on COVID-19, four observational studies and 15 modelling studies on SARS and MERS. Because of the diverse methods of measurement and analysis across the outcomes of interest, we could not conduct a meta-analysis and conducted a narrative synthesis. Due to the type of evidence found for this review, GRADE rates the certainty of the evidence as low to very low. Modeling studies consistently reported a benefit of the simulated quarantine measures, for example, quarantine of people exposed to confirmed or suspected cases averted 44% to 81% incident cases and 31% to 63% of deaths compared to no measures based on different scenarios (incident cases: 4 modelling studies on COVID-19, SARS; mortality: 2 modelling studies on COVID-19, SARS, low-certainty evidence). Very low-certainty evidence suggests that the earlier quarantine measures are implemented, the greater the cost savings (2 modelling studies on SARS). Very low-certainty evidence indicated that the effect of quarantine of travellers from a country with a declared outbreak on reducing incidence and deaths was small (2 modelling studies on SARS). When the models combined quarantine with other prevention and control measures, including school closures, travel restrictions and social distancing, the models demonstrated a larger effect on the reduction of new cases, transmissions and deaths than individual measures alone (incident cases: 4 modelling studies on COVID-19; onward transmission: 2 modelling studies on COVID-19; mortality: 2 modelling studies on COVID-19; low-certainty evidence). Studies on SARS and MERS were consistent with findings from the studies on COVID-19.


Authors' conclusions: Current evidence for COVID-19 is limited to modelling studies that make parameter assumptions based on the current, fragmented knowledge. Findings consistently indicate that quarantine is important in reducing incidence and mortality during the COVID-19 pandemic. Early implementation of quarantine and combining quarantine with other public health measures is important to ensure effectiveness. In order to maintain the best possible balance of measures, decision makers must constantly monitor the outbreak situation and the impact of the measures implemented. Testing in representative samples in different settings could help assess the true prevalence of infection, and would reduce uncertainty of modelling assumptions. This review was commissioned by WHO and supported by Danube-University-Krems.


As in all specialties, learning in radiology is a life long process but for radiologists in training there is a vast amount of information to assimilate. In this book the authors have compiled 191 cases to help the reader with the practical aspects of image recognition and differential diagnosis.The selection of cases is broad enough to provide an introduction for some readers, with more testing cases for those in the later stages of training. Each self-test case is presented with an image, or set of images, together with the pertinent clinical details. The solution and explanation is presented over the page along with differential diagnoses that logically derive from the images and history. The correct diagnosis is followed by discussion of the underlying problem, strategy points and main imaging findings.The book contains 500 images including X-rays, ultrasound, CT, MRI, interventional techniques and nuclear medicine. It is of value to radiologists in training and other health professionals wishing to improve their radiological skills, and is the first book for the FRCR Part 2B exam.


We searched MEDLINE, CINAHL, and Index to Chiropractic Literature from inception to November 25, 2019. We used rapid review methodology recommended by the World Health Organization. Eligible studies (cross-sectional, case-control, cohort, randomized controlled trials, diagnostic and reliability) were critically appraised. Studies of acceptable quality were included in our synthesis. The lead author extracted data and a second reviewer independently validated the data extraction. We conducted a qualitative synthesis of the evidence.


At the request of the CCBC, we conducted an independent rapid review of the literature to investigate the clinical utility of routine and repeat radiographs (in the absence of red flags) for the structural and functional evaluation of the spine by chiropractors. Specifically, we aimed to investigate: 1) the diagnostic utility of radiographs of the cervical, thoracic or lumbar region for the structural and functional evaluation of the spine; 2) the therapeutic utility of radiographs of the cervical, thoracic or lumbar region for the structural and functional evaluation of the spine; and 3) whether functional or structural findings on repeat radiographs of the cervical, thoracic or lumbar spine are valid markers of clinically meaningful change when monitoring conditions or managing patients. Our three main research objectives required that we first determine the validity and reliability of radiographs for the structural and functional evaluation of the spine.


We conducted a rapid review of the literature. Rapid reviews are used by health decision-makers (clinicians, patients, managers, and policy makers) who need timely access to health information to plan, develop and implement health care and policies [21, 22]. We used methodology recommended by the World Health Organization to answer our questions and previously used by our group [21, 23].


We reported our review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) and PRISMA Harms checklists [24, 25]. We registered our review with the International Prospective Register of Systematic Reviews (PROSPERO) on November 12, 2019 (CRD42020158321).


We included RCTs, cohort studies, case-control studies, cross-sectional studies, and diagnostic and reliability studies. We excluded guidelines, letters, editorials, commentaries, unpublished manuscripts, dissertations, government reports, books and book chapters, conference proceedings, meeting abstracts, lectures and addresses, consensus development statements, guideline statements, cadaveric, laboratory or animal studies, qualitative studies, systematic reviews and meta-analyses.


We developed our search strategy in consultation with a health sciences librarian, and a second librarian reviewed the strategy to ensure accuracy. We systematically searched three databases that thoroughly index the manual therapy literature published by various health professions from inception to November 25, 2019: MEDLINE (U.S. National Library of Medicine, through Ovid Technologies Inc.), Cumulative Index to Nursing and Allied Health (CINAHL, through EBSCOhost), and Index to Chiropractic Literature (ICL, Chiropractic Library Collaboration). Search terms consisted of subject headings specific to each database (e.g., MeSH in MEDLINE) and free text words relevant to our objectives and study design [see Additional file 1]. We restricted our search to papers published in English.


We used a two-phase screening process to identify eligible studies. In phase one screening, we reviewed titles and abstracts and classified articles as possibly relevant or irrelevant. During phase two screening, we reviewed the full text of possibly relevant articles for final determination of eligibility.


A trained investigator (MC) conducted all of the screening. Prior to phase one and phase two screening, we validated the quality of screening by MC. Ten percent of all eligible articles were randomly selected and the titles and abstracts (phase one) and full text (phase two) of these articles were screened independently by a second experienced investigator (CC). A 95% level of agreement was required between two reviewers before moving to full screening. Once the 95% agreement was achieved, one reviewer (MC) completed phase one and two screening.


The lead author (MC) extracted data from acceptable quality (low risk of bias) studies and built evidence tables stratified by study type (Tables 3 and 4). Data extraction of each study was validated by one of four reviewers (PC, CC, SM, VK) to ensure accuracy. We contacted the study authors when clarification or additional information/data was necessary to build the evidence tables [46]. Evidence tables summarized the pertinent information and were used to create summary statements describing the body of evidence. 2ff7e9595c


0 views0 comments

Recent Posts

See All

Comments


bottom of page